
The complexity of birdsong has fascinated us
throughout the ages. Students of bird behavior have
long suspected that birds are capable of producing,
perceiving and learning features of their songs that
are beyond the capabilities of human hearing
(Pumphrey 1961; Greenwalt 1968; Schwartzkopff
1968; Konishi 1969). One early focus on this issue,
that birds might hear better at higher frequencies than
humans (Knecht 1940), was quickly dispelled as rig-
orous psychophysical testing methods demonstrated
that birds showed much less sensitivity than humans
to frequencies below about 1 kHz or above about 
5 kHz (see, for review, Dooling et al. 2000). Birds, in
fact, have a much narrower range of auditory sensi-
tivity than do humans and other mammals (for a re-
view, see Fay 1988). 

Yet, many birds produce and learn complex tonal
or harmonic vocalizations that involve rapid modula-
tions in frequency and amplitude (for reviews, 
see Kroodsma & Miller 1982, 1996; Marler &

Slabbekoorn 2005). So, while it would perhaps not be
too surprising if these complex features were outside
the limits of spectral and temporal resolution of hu-
mans and other mammals, it would seem impossible
for them to also fall outside the perceptual capabili-
ties of the species of birds that learn and use them as
communication signals.

An example which illustrates this issue are the har-
monic vocalizations of Zebra Finches (Taeniopygia
guttata), a popular bird used in studies of the neuuro-
biology of song learning. Zebra Finch vocalizations
are temporally and spectrally complex (harmonically
rich, rapidly modulated; see Fig. 1a and 3a). Small,
domesticated birds such as these are easily tested
with laboratory physiological and psychophysical
procedures. The fact that these birds are easily trained
makes Zebra Finch calls and songs an ideal test to ex-
amine whether sensitivity to temporal fine structure
underlies species-specific perceptual specializations.
Zebra Finch contact calls have very short fundamen-
tal periods of about 1.5–2.0 ms (Lohr & Dooling
1998), shorter than most estimates of temporal reso-
lution in the human auditory system (Viemeister &
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Plack 1993). It is immediately clear that any acoustic
information in the waveform fine structure within
these periods is likely lost to humans and at least
some other mammals, but one might rightly wonder
whether it is available to birds—especially Zebra
Finches who produce them.

There is a history of speculation on this topic. The
temporal complexity of bird vocalizations along with
well-known differences between birds and mammals
in the anatomy and physiology of the peripheral and
central auditory systems have long been used to argue
for extremely fine temporal processing abilities 
in birds (Pumphrey 1961; Greenewalt 1968;
Schwartzkopff 1968; Konishi 1969; Carr & Friedman
1999). Interestingly, by standard measures of tempo-
ral resolution, including detection of gaps in noise,
temporal integration, duration discrimination, and
temporal modulation transfer functions birds have not
been shown to be particularly more sensitive to the
temporal features of acoustic signals than are other
vertebrates (Dooling & Haskell 1978; Dooling &
Searcy 1981, 1985; Dooling 1982; Fay 1988; Klump
& Maier 1989; Dooling et al. 2000). 

One reason why differences in temporal resolving
power between birds and mammals do not emerge
from such standard tests may be that these conven-
tional measures do not provide an adequate evalua-
tion of the limits of temporal resolution in the avian
ear. All of the measures of temporal resolution listed
above involve the detection of changes in the rela-
tively slow temporal features of a sound, referred to
as the envelope characteristics. However, there are
other temporal features of complex sounds that can
be very subtle and occur at higher frequencies
(Viemeister & Plack 1993). These are referred to as
the temporal fine structure of the waveform.

Here we review some of the recent psychophysical
research that bears directly on this issue by examin-
ing the perception of temporal fine structure of har-
monic complexes by Zebra Finches. The Zebra Finch
“contact” call is one of the most obvious and most
ubiquitous vocalizations given by these birds in cap-
tivity (Blaich et al. 1995) or in the wild (Zann 1984).
As highly social, colonial songbirds, Zebra Finches
must not only learn their own songs and calls (in the
case of males), but they must discriminate between
the complex harmonic calls and songs of many con-
specifics. Signal processing techniques can be used to
manipulate these sounds and to create synthetic har-
monic models for testing. These models can mimic
very closely the natural properties of harmonic bird
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Fig. 1. a) Spectrogram of a female Zebra Finch contact call.
These harmonically rich calls typically have fundamentals
ranging from 540 to 620 Hz, corresponding to periods of
1.85–1.61 ms (Zann 1984; Simpson & Vicario 1990; Okanoya
et al. 1993; Blaich et al. 1995). b) Schematic representation of
the mistuning of the 5th harmonic of a standardized harmonic
tone (“Spectrum”), and the effects of this mistuning on the
overall structure of the waveform (“Waveform”), as well as
progressive alterations of the fine temporal structure (“Fine
structure”) that result from a mistuning of this type. c) Com-
parative human and Zebra Finch thresholds for the detection
of several mistuned harmonics for standardized harmonic
complexes of two different fundamental frequencies
(285 Hz–period of 3.51 ms, and 570 Hz–period of 1.75 ms)
(adapted from Lohr & Dooling 1998). All components were
generated in sine starting phase. Thresholds are plotted as a
percentage of harmonic frequency (log scale). Note that
thresholds for Zebra Finches are nearly an order of magnitude
lower than those for humans.



sounds, and provide a basis for understanding the re-
lation between production of specific features of nat-
ural vocalizations and species-specific perceptual
processes. Synthetic stimuli also allow one to pose
detailed questions regarding how complex perceptual
processes may have become specialized through the
course of evolutionary development. 

The Case of the “Mistuned” Harmonic
Fig. 1a shows that the contact call of the female

Zebra Finch is a harmonic complex with a fundamen-
tal typically around 600 Hz. Fig. 1b shows that it is
quite easy to create a synthetic version of this har-
monic complex by adding together, in phase, a set of
harmonically-related pure tones. It also shows that
mistuning one of the harmonics, ever so slightly, cre-
ates interesting changes in the time waveform—
specifically in the temporal fine structure—in addi-
tion to creating alterations to the spectrum. Mistuned
harmonics may produce a variety of different audi-
tory cues, and can produce a variety of sensations in
human listeners (Moore et al. 1985, 1986; Hartmann
et al. 1990). Nevertheless, small changes in the fre-
quency of a single component of a harmonic complex
can create perceptible changes that may be tied to
temporal phenomena such as neural synchrony (Hart-
mann 1997).

Using harmonic complexes with either a 285 or a
570 Hz fundamental (modeled after the naturally oc-
curring contact call of Zebra Finches), Lohr and
Dooling (1998) measured the threshold for detecting
mistuned harmonics in Zebra Finches and humans.
These results are shown in Fig. 1c in terms of the log
of the Weber fraction for frequency (DF/F) for each
fundamental. Behavioral thresholds for detecting in-
harmonicity in Zebra Finches were almost an order of
magnitude lower than for humans. A neurophysiolog-
ical study of single-unit responses in the Zebra Finch
auditory forebrain also showed that extremely precise
preservation of temporal cues in the auditory fore-
brain is necessary for a full response to complex,
learned, species-specific vocalizations (Theunissen &
Doupe 1998). The fact that the mistuning of a har-
monic causes a number of changes in a harmonic
complex, including changes in the temporal fine
structure of the sound, suggested other experiments
to measure the sensitivity of Zebra Finches to tempo-
ral fine structure.

Timbre Discrimination
Another kind of manipulation is to change the rela-

tive amplitude of components in a harmonic stimulus.
These types of changes result in alterations in the per-
ceptual quality, or “timbre,” of the stimulus and such
differences also lead to alterations in the temporal
fine structure of the sound. The ability to detect
changes in timbre has been tested in birds, both with
natural vocalizations, and standard harmonic com-
plexes. Cynx et al. (1990) demonstrated that Zebra
Finches were able to detect an amplitude change of
5–10 dB in the second harmonic of a song syllable
(fundamental�615 Hz), with some individuals show-
ing a response to changes as small as 2 dB. Lohr and
Dooling (1998) tested both Zebra Finches and hu-
mans on the ability to detect changes in amplitude of
single components of a standard harmonic stimulus.
Zebra Finches had thresholds on the order of 1.5–2
dB for detecting changes in amplitude of the 5th har-
monic in a stimulus with a 570 Hz fundamental.
Human thresholds, while quite variable, averaged
higher, at 3.8 dB. Zebra Finches are known to pro-
duce highly consistent amplitude relationships in
their harmonic vocalizations, and the specific relative
amplitude relationships may differ in consistent ways
among individuals (Williams et al. 1989). 

Discrimination of Schroeder Complexes
Manipulating complex sounds always carries with

it the uncertainty that more than one feature of the
stimulus is changing. This in turn makes it difficult to
define specifically what it is that the auditory system
is responding to at a particular threshold. Recent
work with harmonic complexes provides a way
around this dilemma. Harmonic waveforms con-
structed with component starting phases selected ac-
cording to an algorithm developed by Schroeder
(1970) have particularly useful characteristics and
were used to test Zebra Finches. The stimuli were
harmonic complexes consisting of a set of equal-am-
plitude harmonic components of a given fundamental
frequency, with frequencies ranging from 150 (or the
fundamental frequency) to 5000 Hz. Seven pairs of
these harmonic complexes were produced, with fun-
damental periods ranging from 6.6 ms (fundamental
frequency of 150 Hz) to 1 ms (fundamental frequency
of 1000 Hz) in duration. The phases of the compo-
nents were monotonically increasing (�Schroeder
complex) or decreasing (�Schroeder complex) with
harmonic number. This results in instantaneous fre-
quencies that fell or rose monotonically across each
period but otherwise all the waveforms have a flat en-
velope and, within a pair defined by the fundamental

17

Temporal acuity of the avian auditory system



frequency, have identical long-term spectra. Fig. 2a
shows examples of negative and positive Schroeder-
phase waveforms for some of the fundamental fre-
quencies used here. These waveforms were 260 ms in

duration including 20-ms cosine2 onset and offset
ramps. Even a cursory look at these stimuli shows
that the acoustic differences between members of a
pair of these complexes are limited to temporal fine
structure. 

Fig. 2b shows the performance of Zebra Finches
and humans tested on the positive/negative Schroeder
waveform discriminations at different fundamental
frequencies. All finches were able to discriminate be-
tween positive and negative Schroeder harmonic
complexes at fundamental frequencies up to at least
1000 Hz. Human listeners cannot make these discrim-
inations when the fundamental period becomes
shorter than 3–5 ms. Canaries and budgerigars also
surpass humans in discrimination of these complexes
and electrophysiological measures such as the CAP
(compound action potential) from the auditory pe-
riphery of birds and gerbils to these same harmonic
complexes reveal significant differences between
birds and mammals in peripheral processing of these
sounds (Dooling et al. 2002). Thus, enhanced tempo-
ral processing of complex sounds may be a general
characteristic of the avian auditory system. 

Discrimination of Natural Zebra Finch Fine
Structure

There are reasons to believe that the sensitivity to
temporal fine structure in birds could be related to the
mechanisms for producing complex sounds. Studies
of the neural responsivity of auditory-motor regions
in the songbird brain suggest that they may be partic-
ularly sensitive to characteristics of conspecific
songs. As an example, the HVC is a central song pro-
duction nucleus responsible for the motor control of
singing behavior (for a description of recent nomen-
clature, see Jarvis 2005). In Zebra Finches and other
species such as white-crowned sparrows and song
sparrows, neurons in the HVC are strongly respon-
sive to the auditory stimulus of a bird’s own song
(BOS) (Margoliash 1983, 1986; Margoliash & For-
tune 1992; Volman 1996; Theunissen & Doupe 1998;
Nealen & Schmidt 2001). Changes in syllable order-
ing, or playing the song in reverse, can significantly
reduce the response of HVC neurons (Margoliash &
Fortune 1992; Lewicki & Konishi 1995; Lewicki &
Arthur 1996). Such BOS-selective responses also
occur in other portions of the song control motor
pathway (Doupe 1997). BOS-selectivity, however, is
not generally characteristic of sensory pathways in
the anterior forebrain leading up to the HVC
(Lewicki & Arthur 1996; Sen et al. 2001). So, it is
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Fig. 2. a) Temporal waveforms of negative and positive
Schroeder-phase harmonic complexes. These harmonic sounds
were generated using the Schroeder algorithm to minimize en-
velope cues (Schroeder 1970; see text details). Stimuli were
260 ms in duration. Details are shown for Schroeder-phase
waveforms having fundamental frequencies of 100 Hz,
200 Hz, and 400 Hz (period durations of 10 ms, 5 ms, and
2.5 ms, respectively). b) Results for Zebra Finches and humans
tested on positive/negative Schroeder waveform discrimination
at different fundamental frequencies ranging from
150 Hz–1000 Hz (periods of 6.7–1.0 ms, respectively). Error
bars represent standard errors between subjects. Human
thresholds begin to fall toward chance levels at fundamental
frequencies above about 300 Hz (periods less than 3.3 ms),
while Zebra Finch thresholds remain high at fundamental fre-
quencies up to 1000 Hz (periods of 1.0 ms) (Dooling et al.
2002).



still a mystery how the acute selectivity of vocal
motor regions of the songbird brain are associated
with the resolution for temporal characteristics of
vocal signals that must begin at the auditory periph-
ery.

To address specific questions regarding the tempo-
ral acuity for natural calls independent of the continu-
ously varying overall spectral and temporal changes
that normally occur in such calls, we designed test
stimuli using single periods of a call (Lohr et al. in
press). Fig. 3a shows the time waveform of a female
Zebra Finch contact call. We randomly selected sin-
gle periods of contact calls, excised them, and repli-
cated these periods to create stimuli that mimicked
natural calls in terms of the waveform within an indi-
vidual period, but having flat envelopes. Fig. 3 shows
examples taken from three locations in a single Zebra
Finch contact call. Fig. 3b details the temporal fine
structure of the different synthetic calls constructed
from these three individual periods. Birds and hu-
mans were tested on their ability to discriminate for-
ward versus reversed versions of these calls (Lohr et
al. in press). Discriminations between a forward and
reversed stimulus—which differed only in the order-
ing of temporal fine structure—was quite easy for
finches and virtually impossible for humans (Fig. 3c).

DISCUSSION

In summary, the ability of birds to make waveform
discriminations at high fundamental frequencies indi-
cates the well-developed precision in temporal reso-
lution that is obtained with natural vocalizations. The
basis of this exceptional discrimination of time struc-
ture in complex stimuli cannot be explained by per-
formance on other temporal resolution tests involving
more standard stimuli. Temporal resolution deter-
mined from gap detection in the nerve and forebrain,
or from temporal modulation transfer functions in the
nerves of starlings is not remarkable (Buchfellner et
al. 1989; Klump and Gleich 1991; Gleich and Klump
1995). The exceptional phase locking shown for the
owl (Carr and Konishi 1990; Köppl 1997) is probably
not representative for the Zebra Finches tested here
or for other songbirds (Gleich and Narins 1988). 

It is easy to imagine that, aside from sound local-
ization in such species as the barn owl, rapid and pre-
cise temporal coding may be important for bird com-
munication and individual identification. With the ex-
ception of sound localization studies in the barn owl,
these studies are the first to demonstrate exquisite be-
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Fig. 3. a) Time waveform of a female Zebra Finch contact
call showing regions of individual periods that were excised
and concatenated to produce 200 ms synthetic calls consisting
of repeated single periods of a natural call. Thus, synthetic
calls were designed to mimic both the fundamental frequen-
cies and temporal fine structure of natural Zebra Finch calls. b)
The fine structure of both forward and reversed versions of
these calls is shown below each corresponding synthetic call.
c) Results for Zebra Finches and humans tested on forward/re-
versed synthetic call discrimination. Zebra Finches perform at
much higher levels in discriminating between forward and re-
versed versions of such calls compared with humans. Funda-
mental frequencies ranged from 690 Hz–816 Hz (periods of
1.45 ms–1.225 ms, respectively) (Fig. modified from Lohr et
al. in press).



havioral sensitivity to temporal fine structure as
might occur in and underlie the perception of
acoustic stimuli with similarities to natural vocal sig-
nals. In Zebra Finches, the precise coding of temporal
information in the vocal motor circuitry and syringeal
mechanisms is currently receiving a great deal of at-
tention (Vicario 1991; Fee et al. 1998; Janata and
Margoliash, 1999; Brainard & Doupe 2001; Sen et al.
2001; Tchernichovski et al. 2001). Taken together,
these kinds of investigations might offer an important
opportunity to understand acoustic communication,
song learning, and individual recognition in birds.

The enhanced temporal resolution in Zebra
Finches for the processing of acoustic communica-
tion signals invites speculation about mechanisms.
This enhancement is evident in the auditory periphery
since it is reflected, in part, in CAPs recorded to posi-
tive and negative Schroeder stimuli (Dooling et al.
2002), just like those used in behavioral tests reported
here. CAP differences between birds and mammals,
which reflect synchronized activity in the VIIIth
nerve, strongly indicate that there are differences in
how these stimuli are coded in the earliest stages of
avian and mammalian auditory periphery. As of yet,
however, it is not clear to what extent these differ-
ences are micromechanical, neural, or both.

Finally, it is worthwhile to consider the relevance
of these results at the level of acoustic communica-
tion. Historically, the analysis of bird vocalizations is
usually done in the spectral domain using sonograms
or spectrograms, and rarely extends to the level of
temporal fine structure. But the results we have re-
viewed suggests that the avian auditory system may
effectively be “stretching” time when perceiving
complex sounds such as species-typical vocaliza-
tions. Spectrographic analysis would miss such de-
tail—perhaps in a sense confirming the classic refrain
of avian ethologists that much of the complexity in
bird song cannot be appreciated by human hearing
unless the tape is slowed down. The larger implica-
tions are that if birds typically perceive detail in their
complex vocalizations beyond the range of human
discriminatory capabilities, they may have much
larger vocabularies than previously thought. Though
highly speculative, a super sensitivity to temporal
fine structure in vocal signals, might also aid sound
localization, ranging, and sound source identification
in complex natural environments.
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